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Abstract

This research effort develops an interdisciplinary design tool to optimize an orbit
for the purpose of wirelessly beaming power from the International Space Stations (ISS)
Japanese Experimental Module Exposed Facility (JEM/EF) to a target satellite. For
the purpose of this initiative, the target satellite will be referred to as FalconSATG6, a
reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA)
FalconSAT5 program. The USAFA FalconSAT program provides cadets an opportunity
to design, analyze, build, test and operate small satellites to conduct Department of
Defense (DoD) space missions. The tool developed for this research is designed to find
an optimal solution balancing the need to maximize the amount of access time between
the ISS and FalconSAT6 while minimizing the range between the spacecraft. This tool
places mathematical rigor to the problem and determines realistic solutions using cur-
rent technology. Using this tool allows mission planners to economically and accurately

predict the outcome of a proposed wireless power beaming mission.

v
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MISSION ANALYSIS AND DESIGN FOR SPACE BASED
INTER-SATELLITE LASER POWER BEAMING

I. Problem Statement

For years various groups have been discussing using lasers to power satellites, other
space vehicles, or beam power to the Earth’s surface from orbit [29]. These concepts have
included: Dr. Landis’ 1991 proposal for an Earth based laser to power a satellite called
SpacE Laser ENErgy (SELENE) [25] and recently Japan’s Space solar power system
(SSPS). Until now, there has been little to no mathematical or engineering rigor behind
such ideas with the authors mostly “assuming” that such a system would be physically
possible, if not entirely feasible. The National Aeronautics and Space Administration
(NASA) however has considerable interest in such a system for its electric propulsion
potential. Possible advantages include reduced fuel requirements over more traditional
thrusters. This technology in turn can lower launch cost by reducing mass or allowing
for a larger payload. Increasing the power available to an ion or electrical propulsion
system can dramatically enhance the performance of such a system. Additionally, if fuel

mass is left constant the lifetime of the satellite may increase.

[ IR
e —

P . 5o S

Figure 1.1: ~ NASA / Air Force Institute of Technology (AFIT) / USAFA Laser Power
Beaming Concept
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As seen in Figure 1.1, the motivation for this research stems from the notion that
one can power an orbiting spacecraft payload wirelessly via laser from another spaceborne
platform. This research effort develops a multi-disciplinary design tool to optimize an
orbit for the purpose of wirelessly beaming power from the International Space Station’s
(ISS) Japanese Experimental Module Exposed Facility (JEM/EF) seen in Figure 1.2 to
a target satellite to power a Busek™ Hall-Effect Thruster (BHT) as seen in Figure 1.3.
For the purpose of this initiative, the target satellite will be referred to as FalconSAT6, a
reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA)
FalconSATS5 seen in Figure 1.4. The USAFA FalconSAT program provides cadets an
opportunity to design, analyze, build, test and operate small satellites to conduct De-
partment of Defense (DoD) space missions. FalconSAT research is conducted within the
Academy’s Space Systems Research Center [11]. This tool analyzes all possible orbits
and determines realistic solutions using current technology. Using this tool allows mis-
sion planners to economically and accurately predict the outcome of a proposed wireless

power beaming mission.

Figure 1.2:  Photograph of the JEM/EF Onboard the ISS [3]

The goals of this research are to develop, test, validate, and exercise a computer

based orbital model that, given the orbit of the ISS and various physical real world
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Figure 1.3:  BHT-200 [1]

Figure 1.4:  Construction of FalconSAT5 [5]
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constraints, will determine the optimal orbit for transferring power between the ISS and
FalconSAT6 with the maximum total access time at the minimum mean range. Next,
the proposed optimized orbit will be scrutinized via various software tools for validity.
Finally, an evaluation of what orbital configurations would be possible if hardware beyond
what is currently available were to be used. Based on the results of these evaluations, a
determination of the feasibility of such a wireless power transfer mission will be discussed.
The end result shows that, unlike previous laser power beaming mission designs, exploring
nearly 7000 possible orbits using a genetic optimizer one can quickly and effectively obtain
an optimal solution to maximize the total access time while minimizing the mean range

between two satellites.

In this thesis Chapter I introduces the research and discusses the significance of
laser power beaming technology. Chapter II covers the literature review and provides
a basic background of various laser power beaming missions. Chapter III discusses the
development, validation, and verification of the design tool, while Chapter IV explores the
design space using the model. Finally, Chapter V concludes the thesis with a discussion

on the results obtained by the model and the need for future work.
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II. Background
2.1 Chapter Overview

This chapter will analyze the background of and reasons for the wireless transmis-
sion of power. The discussion will begin with a look at the origins of wireless power
transmission followed by justification for the use of a space-based laser for the trans-
mission of power between two satellites as well as an overview of previous concepts.
Additionally, an algorithm for calculating the relative motion between two satellites is
presented. Next, a short discussion on the ISS body frame and the JEM/EF is presented.
Finally, a discussion on the two orbital propagators used in this study will conclude the

chapter.

2.2 The Roots of Wireless Energy

The quest for wireless energy dates back to the work of André-Marie Ampere
who, in 1826, first described Ampere’s Law showing that an electric current produces
a magnetic field. In 1831 Michael Faraday described Faraday’s Law of Induction which
became an important law of electromagnetism. This was followed in 1864 by the work of
James Maxwell, who had a consistent theory mathematically modeling electromagnetic
radiation. It took Heinrich Rudolf Hertz in 1888 to prove the existence of electromagnetic
radiation by building an “apparatus for generating electromagnetic waves”, or a radio
transmitter [20]. Finally, as shown in Figure 2.1, 1891 saw Nikola Tesla file for U.S.
Patent No. 454,622 “System of Electric Lighting”. At the World Columbian Exposition
in Chicago in 1893 Tesla demonstrated the wireless illumination of electric light bulbs
as shown in Figure 2.2[14]. This achievement at the World’s Fair would serve as the
culmination of nearly a century of work and would solidify the beginning of an era of
wireless technology. Today, the work of these men and others permeates the world in

which we live.

As Tesla discovered in his work from 1891-1893, the physics for the wireless trans-
mission of power are the same as the wireless transmission of information (radio, for
example) in that an engineer is concerned with the loss of efficiency over a distance [14].

For the transfer of information, when the received power drops below some threshold
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(No Modal.)
N. TESLA.
ETETEM OF ELECTRIC LIGETING.

No. 454,622, Patented June 23, 1801.

-r: g

bo T

Figure 2.1:  Drawing of Wireless Power Transfer in Nikola Tesla’s 1891 U.S. Patent
No. 454,622 [32]
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Figure 2.2:  The "City of Light” at the 1893 World Columbian Exposition in Chicago
32]

the ability to accurately recover the data will be in jeopardy. Energy transfer differs,
however, in that the efficiency of transmitted to received power directly relates to the
capabilities of the craft being powered and is therefore critically important. The work
in the master’s thesis “Minimizing Losses in a Space Power Beaming Experiment” [16]
extensively explores this need for efficiency using the same laser that is the basis for this

research.

2.3 Space-Based Lasers

Beaming power by microwave from space for use on Earth was first suggested by
Dr. Peter Glaser in 1968, and following this suggestion there were several analyses of the
possibility of beaming from space to space by microwave. In the 1980’s, researchers at
NASA Langley worked on the potential use of lasers for space-to-space power beaming,
focussing primarily on the development of a solar-powered laser. In 1989 Dr. Geoffrey
Landis suggested that power could be usefully beamed by laser from Earth to space. In

particular, Dr. Landis proposed at the Princeton Conference on Space Manufacturing
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in 1989 that Earth-based lasers could be used to provide power to a lunar base over the
354-hour lunar night [25]. In 1991, Dr. Rather at NASA Headquarters independently
had exactly the same idea. Shortly after the meeting of Drs. Landis and Rather at the
Resources of Near Earth Space conference in 1991 the SpacE Laser ENErgy (SELENE)
project was born. The idea of using an Earth based laser to extend the life of commu-
nications satellites past battery failure developed out of the laser power for the moon
analysis of the SELENE project as well as the concept of rejuvenating “dead” satellites

as seen in Figure 2.3 [28].

Figure 2.3:  SELENE Concept [25]

When initially considering a laser power system of any kind, it quickly becomes
apparent that there are many different configurations for how such a mission could look.
For example, one could have a terrestrial based laser and beam power to either another
terrestrial unit, or beam power to an orbiting spacecraft. As is intuitively apparent
however, there are many factors within the Earth’s atmosphere that might make such a

eround-to-ground or ground-to-space laser power beaming system impractical. Such a
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system would require a very large power source as the energy loss of a laser beam propa-
gating through the atmosphere is mainly the result of three attributes of the atmosphere.
These atmospheric phenomenon include: molecular absorption, molecular scattering and
particulate scattering. If one were to design a laser power beaming system which inter-
sected the Earth’s atmosphere, a system using the most effective laser wavelengths, from
the standpoint of energy losses under various meteorological conditions, should be se-

lected. [38]

If mission designers place the laser transmitter in orbit (along with the target satel-
lite to be remotely powered) many of the losses associated with transmitting laser light
through the atmosphere can be avoided. Coherent laser light offers a number of unique
advantages as does the space environment, permitting speed-of-light applications such
as optical communication, illumination, target designation, active remote sensing, and
high-energy weapons. Laser technology has matured sufficiently in the past decade to
provide highly reliable, cost-effective, energy-efficient and wavelength-flexible systems
that can be applied to a variety of missions, such as remote sensing and communication.
The unique characteristics of the space environment greatly enhance the utility of de-
ploying lasers in space. These include the lack of any medium to attenuate the beam and
ready access to the entire global surface [29]. As seen in Figure 2.4, on orbit laser systems
may manifest themselves in many forms depending on the intended mission. Although
actually intended to fire into Earth’s extreme upper atmosphere, the Space Based Laser
seen in Figure 2.5 was a concept from 1999 that would enable the system to have greater

coverage over the Earth with a fraction of the atmospheric losses [9].

The use of an Earth-based laser to power an electric thruster for space propulsion
was first proposed by Dr. Grant Logan of Lawrence Livermore Laboratories in 1988,
with the technical details worked out in 1989. His proposal was a bit optimistic about
technology (he proposed using diamond solar cells operating at a six-hundred degrees to
convert ultraviolet laser light). His ideas, with the technology scaled down to be possible
with more practical, nearer-term technology, were adapted into the SELENE program.
The SELENE program was a serious research effort for about two years, but never had

great support from NASA Headquarters as the cost of taking the concept to operational
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Figure 2.4: A Functional Taxonomy for Lasers in Space [29]

Figure 2.5:  Image of the Space Based Laser - Integrated Flight Experiment [9]
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status was too high and the pay-off too far-term. The SELENE project concluded around
1993 before reaching the goal of demonstrating the technology in space [25].

2.4 ISS Attributes

2.4.1 1SS Body Frame.  As this will be important in Chapters IIT and IV and
as a point of reference, Figure 2.6 clearly shows the right-handed body frame of the ISS.
As seen in Figure 2.6(a) the x-axis points in the direction of travel while Figure 2.6(c)
shows the z-axis nadir pointing. Figure 2.6(b) shows the y-axis normal to the x-z plane

and completing the coordinate system.

The actual addition of the laser to the model will discussed in depth in Section
3.5.1.2 and shown in Figure 3.11; however, it is important to note here that the laser

will be mounted so that it points along the positive x-axis (in the velocity direction).

4

ISS Coordinate System ISS Coordinate System ISS Coordinate System

X axis X axis X axis

(a) ISS Body X-Axis (b) ISS Body Y-Axis (c) ISS Body Z-Axis

Figure 2.6:  ISS Body Frame [§]

2.4.2  Japanese Ezperiment Module. — The Japanese Experiment Module (JEM)
called Kibo is Japan’s first human space facility and enhances the unique research capa-
bilities of the ISS. Experiments in Kibo focus on space medicine, biology, Earth obser-
vations, material production, biotechnology, and communications research. Kibo exper-
iments and systems are operated from the Mission Control Room at the Space Station
Operations Facility (SSOF), at Tsukuba Space Center in Ibaraki Prefecture, Japan. As
seen in Figure 2.7, Kibo consists of six components: two research facilities — the Pres-

surized Module and Exposed Facility, a Logistics Module attached to each of them, a
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Remote Manipulator System, and an Inter-Orbit Communication System unit. Kibo
also has a scientific airlock through which experiments are transferred and exposed to

the external environment of space.

Experiment Logistics Module
-Prezsurized Section (ELM-PS)

JEM Remote
Manipulator System
(JEMRMS)

JEM Airlock

Pressurized
Module (PM)

e g BE \
Experiment Logistics Module \
-Exposed Section (ELM-ES)

Inter-orbit Communication

System (IC5)

Figure 2.7:  Diagram of the Japanese Experimental Module [7]

2.4.2.1 Pressurized Module. The Pressurized Module (PM), provides a
shirt-sleeve environment in which astronauts conduct microgravity experiments. There
are a total of 23 racks, including 10 experiment racks, inside the PM providing power
supply, communications, air conditioning, hardware cooling, water control, and experi-
ment support functions. As seen in Figure 2.8, the PM is 11.2 meters long and 4.4 meters

in diameter. [7]

2.4.2.2  FExposed Facility. As can be seen in Figure 2.9, the Exposed
Facility (EF), is a unique platform on the ISS that is located outside of the Pressurized
Module and is continuously exposed to the space environment as seen in Figure 1.2. Items
positioned on the exterior platform focus on Earth observation as well as communication,
scientific, engineering, and materials science experiments. Because the EF’s available
services are perfectly suited for this experiment, the proposed laser as discussed in [16]

will be mounted to one of the external mounting points on the EF. As this is a feasibility
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Figure 2.8:  Kibo’s Pressurized Module Under Construction [7]

study, one of the attachment locations on the EF was chosen as seen in Figure 3.11 and

discussed in Section 3.5.1.2 and used for the entire research. For any future work as

discussed in Section 5.3, the location of the laser may be located anywhere the mission

requirements dictate. The module’s specifications can be seen in Table 2.1 [6]. An

excellent view of the EF while under construction can be seen in Figure 2.10.

Table 2.1:  Japanese Experiment Module - Exposed Facility Specifications

Item | Specification

Shape Box shaped

Width 5.0m

Height 3.8m

Length 5.2m

Mass (at launch) 4.1tons

Number of payload attachment locations | 12

Power (provided from US segment) Max. 11kW 120V (Direct current)
Lifetime More than ten years

2.4.2.8  Other Facilities.
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Figure 2.9:  Diagram of the Kibo Exposed Facility|[6]
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Figure 2.10:  Kibo’s Exposed Facility Under Construction [6]

Ezxperiment Logistics Modules. The Experiment Logistics Modules
(ELMs), serve as on-orbit storage areas that house materials for experiments, mainte-

nance tools and supplies. The PM and the EF each have an ELM [6].

Remote Manipulator System. The Remote Manipulator System
(RMS) consists of two robotic arms that support operations outside of Kibo. The Main
Arm can handle up to 6.4 metric tons of hardware and the Small Fine Arm, when attached
to the Main Arm, handles more delicate operations. Each arm has six joints that mimic
the movements of a human arm. Astronauts operate the robot arms from a remote
computer console inside the PM and watch external images from a camera attached to
the Main Arm on a television monitor at the RMS console. The arms are specifically used
to exchange experiment payloads or hardware located on the EF and ELM - Exposed
Section from inside the PM through a scientific airlock, support maintenance tasks of
Kibo, and handle orbital replacement units. The Main Arm measures 9.9 meters long,

and the Small Fine Arm measures 1.9 meters [6].

Inter-Orbit Communication System. The Inter-Orbit Communica-
tion System (ICS) allows the operators in the Mission Control Room at the SSOF at

Tsukuba Space Center to send commands to Kibo and receive system, payload, and
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video data from Kibo for scientific payload operations. The Mission Control Room uses
the Tracking and Data Relay Satellite System (TDRSS) to communicate with the ICS.
An external ICS unit handles communications with TDRSS, while an internal ICS unit

located in the PM handles data exchange throughout the Kibo facilities [6].
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III. Methodology
3.1 Chapter Overview

This chapter discusses the development of the design tool. The chapter begins with
a discussion the orbital propagators used in this work followed by a brief discussion on
Hill’s Equations. The chapter continues with a discussion on the selection of software
used to create the design tool and then continues to describe the steps taken in the
actual development of the design tool. The chapter concludes with a discussion on the

validation and verification of the design tool.

The tool developed for this research is designed to find an optimal solution balanc-
ing the need to maximize the amount of access time between the ISS and FalconSATG6
while minimizing the range between the spacecraft. To accomplish this goal, an orbital
model was constructed in Analytical Graphics Inc.’s Satellite Tool Kit v9.0.1™ and
controlled via Phoenix Integration’s ModelCenter v8.0™. The Satellite Tool Kit (STK)
orbital model mainly consists of two components: a component representing the ISS as
well as one for FalconSATG6. A laser transmitter attached to the ISS on the JEM/EF pro-
vides the accurate point of origin for power transmission and a receiver on FalconSAT6

provides the target.

3.2 Orbital Propagators

For this research, the J4 orbital propagator is used for FalconSAT6’s propagator
while SGP4 is used for the ISS. A brief discussion on each of the orbital propagators will
be presented here to provide background and help validate the use of different propagators
for each of the two satellites evaluated in this study. Further discussion on the use of

the different propagators can be found in Sections 3.5.1.2 and 3.5.1.3.

3.2.1 J4Perturbation.  Two-Body, J2Perturbation, and J4Perturbation are an-
alytical propagators that generate ephemeris by evaluating a formula. Two-Body’s for-
mula is exact (i.e. the formula generates the known solution for a vehicle moving about
a central body considering only the effect of the body viewed as a point mass) but is not

an accurate model of a vehicle’s actual force environment. J2Perturbation includes the
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point mass effect as well as the dominant effect of the asymmetry in the gravitational
field (i.e. the J2 term in the gravity field, representing North/South hemisphere oblate-
ness); J4 additionally considers the next most important oblateness effects (i.e., the J22
and J4 terms in addition to J2). None of these propagators model atmospheric drag,
solar radiation pressure, or third body gravity; they only account for a few terms of a
full gravity field model. These propagators are often used in early studies (where vehicle
data is usually unavailable for producing more accurate ephemeris) to perform trending
analysis; J2 Perturbation is often used for short analyses (weeks) and J4Perturbation of-
ten for long analyses (months, years). They are particularly useful for modeling “ideal”

maintained orbits without having to model the maintenance maneuvers themselves. [12]

The solutions produced by the J2Perturbation and J4Perturbation propagators are
approximate, based upon Keplerian mean elements. In general, forces on a satellite cause
the Keplerian mean elements to drift over time (secular changes) and oscillate (usually
with small amplitude). In particular, the J2 and J4 terms cause only periodic oscillations
to semi-major axis, eccentricity, and inclination, while producing drift in argument of
perigee, right ascension, and mean anomaly. STK’s J2Perturbation and J4Perturbation
propagators model only the secular drift in the elements (the drift in mean anomaly can

best be seen as a change to the period of motion of the satellite) [12].

3.2.2 SGPJ. The Simplified General Perturbations (SGP4) propagator, a
standard Air Force Space Command (AFSC) propagator, is used with two-line mean
element (TLE) sets. It considers secular and periodic variations due to Earth oblateness,
solar and lunar gravitational effects, gravitational resonance effects, and orbital decay
using a drag model. A mission designer can input the initial conditions for the SGP4
propagator manually, but it is much more common to input TLE sets from a TLE file.
As is discussed in Section 3.5.1.2, a .txt file with the desired TLE was created and the

simulation was directed to use this TLE as the initial condition for the SGP4 propagator.

As seen in Figure 3.1, the result from a 2007 study by Dr. T.S. Kelso, “Valida-
tion of SGP4 and IS-GPS-200D Against GPS Precision Ephemerides” shows how the

approximate error of SGP4 propagates over time. Figure 3.1 shows radial errors in red,

18

www.manaraa.com



in-track errors in green, and cross-track errors in blue. Although the in-track errors
quickly grow to roughly 10km this effect is expected and does not degrade the results of
the simulation. As is discussed in Sections 3.5.1.2 and 3.5.1.3, this is a feasibility study
and each propagator is being used for the spacecraft and situation for which it is best
suited, there is no significant deficiency in the results stemming from this use of the J4
and SGP4 propagators [12]. To avoid these large errors in satellite position, NASA of
course updates the ISS’s TLE approximately every two days (as reinforced by the low
errors near the middle of Figure 3.1). As discussed in Section 5.3, the updates in the
ISS’s TLE need to be included in any real time mission planning.

Adnarms Conpaecn Sains ke PRI
FOE P 20 1 dd 2
T

16

10t . e

Raras Grrar Jam;

1":' 1 1
1% ] & a o 10 10
Fruzaggabzn Time 2w

Figure 3.1: ~ PRN11 Almanac Comparison Statistics [24]

Since the SGP4 propagator incorporates both J2Perturbation and J4Perturbation
[34] terms with the addition of terms such as the lunar and solar effects as well as a
simple atmospheric drag model [12] one would expect that as the simulation is run, the
errors between the ISS’s orbit and that of FalconSAT6 will stay approximately the same.
This trend of similar error propagation between the SGP4 model and the J4 model is
further reenforced by the use of one TLE for the ISS for the entire simulation time as
discussed in Section 3.5.1.2. For further information on the comparison between the J4

and SGP4 propagators, please refer to [34].
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3.3 Hill’s Equations

Although not used in the calculation or validation of the solution, the Clohessy-
Wiltshire Equations (also known as and will be referred to in this research as Hill’s
Equations) are presented as a point of comparison and as a reference for possible future
work as discussed in Section 5.3. Using these equations, a mission planner could, knowing
the two spacecrafts’ position and velocity relative to each other, predict the relative
motion of the target satellite (in this case FalconSAT6) relative to the principle satellite
(in this case the ISS) over a given time span [34]. These equations are listed in Equations

3.1-3.6.

z(t) = %sm(u}t} — (Sxo + %) cos(wt) + (4x0 + %) (3.1)
y(t) = (6:L‘0 + %) sin(wt) + %cos(wt) — (6wzo + 3y0)t + <y0 - %) (3.2)
z(t) = zocos(wt) + %sm(wt) (3.3)
&(t) = &ocos(wt) + (Bwwo + 2o )sin(wt) (3.4)
y(t) = (6wxg + 49o)cos(wt) — 2iqsin(wt) — (6wze + 3yo) (3.5)
2(t) = —zowsin(wt) + Zycos(wt) (3.6)

These equations may be used with the understanding of three underlying assump-

tions.

1. The reference satellite can be referred to as: chief, station, or target. The other
satellite can be referred to as: deputy, orbiter, or interceptor. This research will
refer to the satellite combination as: target and interceptor. Each satellite’s orbit

is determined as a two-body problem.

2. The target is on a circular orbit and the interceptor must be very close to a circular

orbit.

3. The magnitude of the vector from the target to the interceptor must be much less

than the magnitude of the vector from the center of the Earth to the target.
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3.4 Software Used in the Construction of the Design Tool

3.4.1 Satellite Tool Kit v9.0.1. Analytical Graphics Inc.’s Satellite Tool Kit
is a Commercial-off-the-Shelf (COTS) software package designed to allow users to de-
sign and develop complex dynamic simulations of real-world aerospace problems. The
multitude of built-in tools as well as optional component add-ons allow scientists and
engineers the ability to quickly and accurately create complex aerospace simulations.
These simulations are comprised of various components that are assembled to produce
the desired model. Some examples of useful components include: satellites, ground sta-
tions, air vehicles, ground vehicles, ships, and many more. Additionally, as seen in Figure
3.2 using the built in 2D and 3D visualization tools one can easily and intuitively depict
the interaction between various components in the model. Finally, utilizing the access
and azimuth, elevation, and range (AER) tools also native to STK a designer is quickly

able to quantify the interaction between various components. [12]
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Figure 3.2:  STK Main Window

3.4.2  ModelCenter v8.0.  Phoenix Integration’s ModelCenter is a multi-disciplinary

modeling environment that can be used to study and optimize the trade space of a de-
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sign. ModelCenter can combine analyses developed with a variety of tools including
MATLAB™, Mathcad™, Excel™, command line executables, and many more. In this
research, instead of creating a multiple component model as would be natural with a
product such as ModelCenter, a single STK module was implemented as seen in Figure
3.3. This module was then rigorously analyzed using the built-in suite of design and
optimization tools. Model Center’s parametric, design of experiments, and visualization
tools are used to conduct a variety of sensitivity studies to gain insight into what aspects
of the design are the key drivers influencing the desired results. ModelCenter also pro-
vides a rich set of built-in optimization tools that can be used to determine values for
the key drivers that optimize the design for a given goal while ensuring constraints are
not violated. These optimization tools include a gradient optimizer, a genetic optimizer

™ “and an optimizer that utilizes surrogate models of the design space

called Darwin
during optimization called DesignExplorer™/[31]. In this case, the ModelCenter simu-
lations were constructed so that total access time between the satellites was maximized
while average range was minimized within specified minimum and maximum constraints.
Due to its unique ability to compute multi-objective solutions, ModelCenters genetic op-

timization tool Darwin will be used exclusively throughout this research [27]. A more

detailed explanation on genetic optimization may be found in Section 3.4.2.1.

3.4.2.1 Darwin Optimization. ModelCenter’s Darwin tool utilizes a ge-
netic algorithm to find optimal design configurations defined by discrete variables. Ge-
netic algorithms are stochastic algorithms that utilize processes analogous to natural
selection to search through the design space. They have been experimentally proven
to be robust in their application to many search problems, and are ideally suited for
design problems with discretely valued design variables. Because they do not require
objective or constraint gradient information, genetic algorithms are able to effectively
search discontinuous and noisy design spaces. Genetic algorithms search using several
designs (a population of designs) and thus, are much more likely to find the globally best
design. They are capable of finding many near-optimal designs as well, thus providing
the designer with many design alternatives. Genetic algorithms use a list of values to

model a single design configuration. In general, the number of items in the list is equal
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Figure 3.3:  ModelCenter Main Window

to the number of variables specified for the design problem. Each item in the list can

have any value defined in the enumerated set for the corresponding variable.

The genetic algorithm process begins by generating a random set of design con-
figurations. This set of designs is called the first generation. The user-specified number
of members in each generation is called the population size, N,. Each design is then
analyzed and ranked from best to worst based on its objective and constraint values.
Next, two (parent) designs from the population are selected and recombined to create
two child designs using crossover and mutation operators. Designs with a higher rank
are given a greater probability of being selected to create children. The crossover and
mutation operators are implemented according to a user specified probability. In gen-
eral, crossover is implemented with a high probability (= 100%) and mutation with a

low probability (= 15%).

The process of selecting parents and creating children continues until IV, new de-
signs are created and all children are analyzed and ranked. The highest ranked parent

design and all but the lowest ranked child design are then used to create the next gener-
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ation of designs. One generation after another are created until a user-specified number

of generations have been created without improvement in the best design. [27].

3.4.2.2  Pareto-optimal Design.  In general, the solution to multi-objective
optimization problems (such as this thesis) is a “family” of designs often referred to as the
Pareto-optimal set. As seen in Figure 3.4, a Pareto-optimal (or non-dominated) design
has the property that no other design can be found that is better in all objectives. A
design is referred to as non-optimal (dominated) when another design can be found that
has better values for all objectives. Darwin uses a ranking scheme based on the Pareto-
optimal concept when ranking each generation of designs. Non-dominated designs are
given the greatest probability of selected for crossover and mutation. For multi-objective
optimization studies, Darwin will display the Pareto-optimal set of designs found during

the search.

A

Pareto-

optimal "“"-ﬂ-.h‘_‘_

[

Minimize Ohjective 1

Maximize
Ohbjective 2

Non-optimal
designs

>

Figure 3.4:  Pareto Front [27]

3.5 Model Construction

As mentioned in Section 3.1 the simulation for this research essentially consists of
two main parts: the first from the STK model and the second from the ModelCenter
controlling segment. The methodology behind the composition of each main part will be

discussed in turn throughout this section.
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3.5.1 Satellite Tool Kit Model. As discussed in Section 3.1, the STK model
consists mainly of two built-in components, namely two satellites. One satellite is de-
fined to be the International Space Station while the other is defined as FalconSAT6.
Additionally, each satellite can, and does, have subcomponents (such as transmitters and
receivers) attached to it. Here, the details of each satellite component, and its respective
subordinate components will be discussed. Additionally, an examination into the global

STK settings (that is, the settings that affect the entire model) will be conducted.

3.5.1.1 Global Configuration. The scenario time in STK was set to en-
compass approximately a three-month time span. As can be seen Figure 3.5, the epoch
was set to: 8 Jan 2010 16:27:30 (UTC) (JD=2455205.18576389) and the end of the sce-
nario was set to 8 Apr 2010 00:00:00 (UTC). This particular three month time span is
arbitrary, however the duration was chosen for its balance between predicted available
access time and computing time for the simulation to run. As will be discussed in Section

5.3, for future designs this time span may be changed to suit the desired mission design.

Analyziz Period

Start Time: | 3 Jan 2010 16:27:30.000 UTCG )
Stop Time: 8 Apr 2010 00:00:00.000 UTCG )
Epoch Time;  8dJan 201016:27:30.000 UTCG @ Usze Analysiz Start Time
A rimation
Time Update Mode: | Time Step W
Start Time: | 5.Jan 2010 16:27:30.000 UTCG @ Jze Analysiz Start Time
A 3 Apr 2010 00:00:00.000 UTCG @
Step Size: B0 zec @]
Update animation every; 0.01 sec E_J

Figure 3.5:  STK Analysis Period
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3.5.1.2  International Space Station. The STK selections chosen during
the construction of the model were all made with the emulation of reality as the primary
driver. This component of the model has the largest number of details that must all
be accurately chosen to produce a viable model. The first step in inserting the ISS
into the STK model is to determine the source of the orbital parameters. The primary
method of inserting a prominent spacecraft (such as the ISS) into an STK model should
be to automatically download the orbital parameters directly from AGI’s server. This
method however will lead to a simulation that is not useful for the purposes of this
thesis. That is, as NASA and AGI update the orbital parameters on the server, STK
will automatically download the new parameters even if the scenario time in STK is
unchanged, thus changing the ISS’s orbit. If the desired results were an updated, real
time analysis; then this solution would be ideal. However, since the desired behavior of

this model is that of repeatability, a better, although less precise, technique is required.

The orbital elements for the ISS at epoch were therefore downloaded and validated
from CalSky and the resulting two-line element set was saved to a text file to prevent STK
from automatically updating the ISS’s orbital data as seen in Figure 3.6. As discussed in
Section 3.2 different propagators are used for the two different spacecraft. Also seen in
Figure 3.6 is the evidence of the use of the SGP4 propagator for the ISS. This propagator
was chosen over J2 or J4 as it is uniquely suited for use in STK given a specific two-line
element (TLE) set. J2 and J4 are more appropriate as propagators in STK given the
six orbital elements. As J4 is used as the propagator for FalconSAT6, its use will be

discussed in Section 3.5.1.3.

The TLE used in the model is shown in Table 3.1. As mentioned above, this
TLE was downloaded and validated from CalSky. This validation was accomplished
graphically as shown in Figure 3.7. With the simulation set to the epoch time and STK
allowed to freely download new TLEs from the server, the orbital elements associated
with the TLE shown in Table 3.2 were also retrieved from CalSky and were inserted
as the orbital parameters for FalconSAT6. The result was both spacecraft co-located
at the same location at the same time. Additionally, their orbits propagated in unison.

Next, leaving FalconSAT6 with these same orbital parameters, the ISS was transitioned
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to using the TLE obtained from CalSky as its source for orbital data as seen in Figure
3.6. The result from this last change is displayed in Figure 3.7 and revealed no change in
the relative position of the two spacecraft. This therefore shows that the TLE obtained
from CalSky agrees with the orbital elements downloaded from the AGI server and can

safely be used for the rest of the simulation.

Table 3.1:  International Space Station Two Line Element Set at Epoch Time [10]

1 25544U 98067A 10008.68576389 .00010907 00000-0 68829-4 0 3337
2 25544 051.6475 330.1976 0007655 160.0825 206.4481 15.77242795638342

Table 3.2:  International Space Station and FalconSAT6 Orbital Elements at Epoch
Time [10]

Semi-major Axis: 6716.398km
Eccentricity: 0.0007655
Inclination: 51.6475°
Argument of Perigee: 160.0825°
Right Ascension of Ascending Node: 330.1976°
Mean Anomaly at Epoch: 206.4481°

Educational Use Only "

Educaticnal Us

Time Step: 60.00 sec

Figure 3.7:  Demonstration of the ISS and FalconSAT6 Co-located
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As mentioned above, this method of inserting the ISS into the model could intro-
duce error into the simulation, even though it achieves the goal of having a repeatable
model. This error could be due to the fact that while this research will use the TLE
shown in Table 3.1 for three months, NASA updates their ISS TLE every few days.
Therefore, after a few days have passed in the simulation, the TLE shown in Table 3.1
will be obsolete and errors will be introduced into the model. This consequence is ac-
ceptable, however, since this research is merely a feasibility study and not a plan with a

real world epoch in mind.

Next, to ensure the greatest detail and accuracy for the actual rendering of the
ISS itself (as well as X,Y,Z location of the JEM/EF), the built in .mdl rendering file for
the ISS was discarded and replaced with a highly detailed and accurate one obtained
directly from the Space Test Program (STP) as seen in Figure 3.8. This model enabled

the accurate placement of the laser on one of the JEM/EF mounting points.

Educational Use Only

Educational Use only

Figure 3.8:  ISS Model from the Space Test Program

Once the ISS had been properly inserted into the STK model with the correct orbit
that would allow for a repeatable simulation as well as an accurate graphical rendering

of the station, the laser and mission constraints were added. For the purposes of the
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STK simulation, the laser consists of two separate components as seen in Figure 3.9.
This technique compensates for the STK limitation that transmitters cannot be located
in any X,Y,Z location in the body frame on a spacecraft, whereas sensors can. As shown
in Figure 3.9, a sensor was “attached” to the ISS and called LaserMountPoint as it will
serve as the mounting point for the actual laser. Additionally, due to STK’s limitation
concerning the placement of a transmitter, for the purpose of this simulation all physical
constraints normally attributed to the laser will be assigned to the LaserMountPoint
and will be discussed here instead of relative to the transmitter. As shown in Figure
3.9, since the actual transmitting laser (called Laser for this simulation) is a child of
the LaserMountPoint, when the simulation is executed the Laser will take on all of the

attributes of the LaserMountPoint.

v I

5 "

—ﬁ FalconSath
- ﬁu’ T argetSolarCellz
3@ 155_25544

@ Lazerk ountFoint

Figure 3.9: STK Object Browser

The first step in defining the LaserMountPoint/Laser is identifying its type and
dimension to STK. As seen in Figure 3.10(a) a simple conic type of beam was chosen
with an angle of approximately .00573°. The simple conic was chosen as it most easily
represents the physical shape of the laser beam as it travels away from the ISS. The
cone angle is based on the work done in the complementary thesis to this work entitled
“Minimizing Losses in a Space Power Beaming Experiment” [16] and represents the angle

at which the laser beam diverges from a perfectly columnated beam as it propagates
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away from the ISS[16]. As seen in Figure 3.10(b) this value produces a reasonable

representation of the spot size at the operable range of FalconSAT6.

After defining the beam properties of the laser, it was necessary to properly locate
the LaserMountPoint /Laser pairing physically on the ISS. If allowed to place the Laser-
MountPoint /Laser on the ISS in the default location, STK would place it at the center
of the body frame. This trait is undesirable here as this would ultimately locate the
laser in the middle of a module. To properly locate the LaserMountPoint/Laser on the
JEM/EF, trial and error was used to determine the correct location in STK’s ISS body
frame for one of the JEM/EF’s mounting points. As can be seen in Figure 3.11(b) this
task was accomplished graphically via the interface shown in Figure 3.11(a). Also, the

final X,Y,Z coordinates of the LaserMountPoint/Laser are listed in in Figure 3.11(a).

Once the laser was correctly configured in both dimension and location, it needed
to be properly targeted. The only choice for this step, and the topic for this thesis, was
to target FalconSATG6. The actual construction of the FalconSAT6 model will be covered
in Section 3.5.1.3 however as targeting is a function of the LaserMountPoint/Laser it is
covered here. As can be seen in Figure 3.12(a) FalconSAT6 was selected from the avail-
able list of targets and assigned as the LaserMountPoint/Laser’s target. Additionally
“Tracking” was selected because, as the name implies, this function allows the Laser-
MountPoint /Laser to track the target satellite, in this case FalconSAT6. Figure 3.12(b)
demonstrates the result of the targeting selections described in Figure 3.12(a). The blue
line extending from the ISS and intersecting the dot marked FalconSAT6 represents the
laser emanating from the JEM/EF.

With the beam dimension, laser location, and targeting settings fully configured,
the final step of adding the real world physical constraints to the model was accom-
plished. As seen in Figure 3.14(a) constraints are defined for the azimuth, elevation, and
range of the LaserMountPoint /Laser. The £20° azimuth and £20° elevation constraints
effectively form a 40° cone about the Body-X axis as seen in Figure 3.11(b). The con-
straint value selected is based on the work in [16] and is a nominal angle that a generic
COTS fast-steering mirror can subtend. This angle also attempts to prevent the laser

from ever allowing the ISS to obscure the beam. A detailed discussion of the obscuration
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Figure 3.10:  Laser Dimensions
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Figure 3.11:  Laser Location on ISS
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Figure 3.12:  Laser Tracking Parameters
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analysis can be found in Section 4.4. Next, the range constraint was defined. Here, the
minimum and maximum values for the range were selected for quite different reasons.
The minimum range in all directions from the ISS was set to 40km as this satisfies two
requirements. First, a 40km “bubble” around the ISS satisfies NASA’s 10km - 25km
safety zone surrounding the ISS including a factor of safety of over 60%. Second, also
based on the work in [16], 40km is outside the lethal fluency for the type and power of
laser being considered for this mission. The other component of the range constraint,
the maximum range was also defined. The range of 883km was also chosen based on
the work in [16] as this is the maximum effective range of the laser. Considering the
laser spot size at this range as well as the size of the proposed solar cells, system losses,
and available power, this is the largest range that sufficient power can be transmitted to

FalconSAT6 to complete the mission[16].

The next step of defining the LaserMountPoint/Laser’s real world physical con-
straints was identifying the temporal constraint as shown in Figure 3.14(b). This con-
straint serves two distinct purposes. First, 30sec was chosen as the minimum duration
that would be allowed for any one access because, based on the work in [16], 30sec is a
reasonable amount of time for the laser system to: locate and acquire the target satel-
lite, confirm accurate tracking, and transmit enough power for the batteries to receive
a charge. A lower value could potentially have been chosen, however as this is a feasi-
bility study, a theorized worst-case scenario for a minimum access time was desired. In
addition to allowing for a worst-case acquisition time, 30sec also allows for a worst case
tracking rate of the laser system. Using 30sec as a minimum access time allows for an

angular rate as shown as

40°
30sec

= 1.333deg/sec (3.7)

This angular rate for a fast-steering mirror is clearly a worst case scenario. Many
reasonably priced COTS fast-steering mirrors can achieve angular rates orders of magni-
tude less than this. Again however, as this is a feasibility study, a reasonable worst-case

angular rate is desired.
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Next, the access association between the ISS and FalconSAT6 had to be estab-
lished. The actual construction of the FalconSAT6 component will be covered in Section
3.5.1.3; however, as the access association concerns the LaserMountPoint, it will be

discussed here. As shown in Figure 3.13 the access assignment must be between the

LaserMountPoint on the ISS and the TargetSolarCells on FalconSAT6.

Access for: | [35_25544-LaserMountPoink [Select Objeck, .. l

associaked Objects iGraphics
=2 Falconsate [|Inherit Settings from Scenario

------ ﬁﬁ *TargetsolarCells how Line

animate Highlight
Skatic Highlight

Compute Time Period

{*) Use Object Time Periods
{1 Use Scenario Time Period

{1 Specify Time Period

()] ()

Feparts araphs
[ Access, ,, ] [ Access, ., ]
[ Campute ] [ &ER,.. ] [ AER... ]
[ Remove Access ] [ Remove ol ]
[Rep-:nrt & Graph Manager.. ] [ 30 Graphics Displays. .,

Figure 3.13:  ISS to FalconSAT6 Access Assignment

Finally, once all parameters for the LaserMountPoint were correctly set, the actual
laser transmitter was attached to the sensor named LaserMountPoint. As previously
discussed, this laser will assume all of the same traits and constraints of the sensor it is
attached to. Once attached to the sensor, the transmitter component will be defined as

a “Laser Transmitter Model” and take on the properties of a laser. As this thesis does
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not discuss the use of a specific laser, all default settings for the transmitter frequency

and wavelength were accepted.
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] Max D
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Figure 3.14:  LaserMountPoint Basic Constraints

3.5.1.83 FalconSAT6.  As the purpose of this research is the to study the
optimization of FalconSAT6’s orbit, the initial setup for this spacecraft was much less
involved relative to that of the ISS. Similar to the ISS, FalconSAT6 was inserted into
the model as one of the primary modules as seen in Figure 3.9. This was done simply
by creating a satellite in STK and defining it with the orbital parameters of the ISS as
seen in Table 3.2. As discussed in Section 3.5.1.2, assigning FalconSAT6 the same orbital
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elements as the ISS provides a verification method for the ISS’s orbit. Additionally, as
will be discussed in Section 3.6, the orbital elements for FalconSAT6 were initially set to
match those of the ISS to examine a “best case scenario” for the access time, and, as will

be discussed in Chaper IV, give ModelCenter a place to start the optimization process.

As seen in Figure 3.15, while defining the orbit for FalconSAT6 the J4 propagator
was selected. This propagator was chosen because, in STK and as discussed in Section
3.2, it is best suited for the given input of orbital elements (verses the TLE given for the
ISS). Again, as this is a feasibility study, having different propagators will not adversely

affect the result of the research.

Fropagator: | J4Perturbation A Imitial State Tu:u:-l...]

[ Use Scenario Analysiz Period

Start Time: Blan 200 16:27:30.000 UTCG @

Stop Tirne: 8 Apr 2010 00:00:00.000 UTCG @

Step Size: B0 zec @

Orbit Epock: (8 Jan 20010 16:27:30.000 UTCG @ Semimajar Axis w  BF16.4 km m

Coord Epoch:; D E coentricity + | |0.0007655 ()

Coord Type: | Classical w Inclination | 51.6475 deg |

Coord System; | True0fDate w Argument of Perigee 160,083 deg =

Prop Specific; | Special Options... RAAN v | 330,135 deg @
b ean Anomaly w 206,448 deq @

Figure 3.15:  FalconSAT6 Orbital Definition

Once the satellite was installed in the model, the default graphical rendering of
a generic satellite was replaced with the USAFA’s STK image file for FalconSAT5 as
shown in Figure 3.16. This enables accurate access calculations between the ISS and
FalconSAT6 as the relative size and cross section will be correct. Additionally, as will
be discussed in Chapter V, having an accurate size for the FalconSAT6 bus as well as

the attached solar panels will aid in the development of possible follow-on work.
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Educational Use Only

Figure 3.16:  USAFA’s FalconSAT5 STK Model

Attaching the solar panels was the final step in placing FalconSAT6 into the overall
model. As placing the solar panels at the center of mass of FalconSATG6 is far less
consequential than for the ISS due to its small size relative to both the ISS and the laser
spot size as shown in Figure 3.10(b), the process is much less complex relative to the
placement of the laser on the ISS. The solar panel was attached to FalconSAT6 simply
by adding a receiver object and associating it to FalconSAT6 as shown in Figure 3.9.
This receiver was named TargetSolarCells. The receiver was then defined as a “Laser
Receiver Model” and, like the “Laser Transmitter Model”, all default frequencies and

wavelengths were accepted.

3.5.2  ModelCenter Simulation. The STK model described in Section 3.5.1 is
only one part of the greater simulation. The actual analysis takes place in ModelCen-
ter. For this research effort, a single STK component served as the entire model in
ModelCenter; which was extensively explored using ModelCenter’s built in design, data
visualization, and optimization tools. Compared to the construction of the actual model
in STK, the setup in ModelCenter for this research was simple. As seen in Figure 3.3

to actively control a STK model from within ModelCenter, a STK component must be
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added to the component pane in ModelCenter’s main window. Once this task was ac-
complished and the correct STK file was associated with the new component, the STK

model had to be verified to ensure it was producing accurate and reliable results.

3.5.83  Summary of Model Constraints, Assumptions, and Limitations. The
summary of the model’s constraints as discussed in Section 3.5 is displayed in Table 3.3.
Additionally, this model is constrained to using only the ISS and one other satellite (in
this case, FalconSATG6). If the analysis of the interaction between the ISS and other
satellites is desired, then one would need to add those additional satellites to the model.
This can be accomplished manually via STK or one can download satellites from STK’s
extensive database (similar to the manner which the ISS was initially added to the
model as discussed in Section 3.5.1.2). The model is also limited to finding solutions to
the problem as constrained in Table 3.3. All of these parameters can (and should) be
changed to fit the needs of the current design proposal as discussed in Section 5.3. Finally,
other than a 3kW input power laser and a BHT-200, this model makes no assumptions
of which hardware should be used in a mission of this type (control system, solar panels,

etc.).

3.6 Model Verification and Validation

As was mentioned in Section 3.5.1.3, FalconSAT6’s orbital elements were initially
set to the values shown in Table 3.2. That is, they were set to those of the ISS at the
epoch time thus exactly co-locating the two satellites at the epoch time. To verify and
validate the model, a parametric study was then conducted via ModelCenter as shown
in Figure 3.17. Each orbital element was individually varied over a specified range as
shown in Table 3.4 while the other five elements were held constant at the ISSs orbital
parameters. Table 3.4 describes the ranges over which each of the orbit elements were

individually varied.

The only two maximum constraints placed on the problem at this point were:
the 883km maximum range as discussed in Section 3.5.1.2 and the decision that no

retrograde orbits beyond a sun-synchronous orbit of 98° would be considered due to the
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Table 3.3:  Summary of Model Constraints and Assumptions

Parameter \ Value \ Reason ‘

Laser Input Power 3EW Maximum power delivered to one attachment
point on JEM/EF

Dwell Mirror Angles +20° Angle in both azimuth and elevation; Help pre-
vent laser obscuration from the ISS

Individual Contact Time 30sec Allows for a slower dwell mirror; Accounts
for delays in acquiring FalconSAT6; Provides
enough time for batteries to receive a feasible
charge

Minimum Total Access Time | 10,000sec | So many solutions have a total access time great
than 10,000sec, a minimum acceptable time had
to be selected; 10,000sec of total access time
translates into approximately 400sec of BHT-
200 firing time

Minimum Range to ISS 40km Outside of NASAs 10km-25km safety bubble
around the ISS; Outside of the lethal laser flu-
ence on FalconSATG6s solar panels

Maximum range from ISS 883km Maximum effective range of the laser

Simulation Time 3 months | 8 Jan 2010 16:27:30 - 8 Apr 2010 00:00:00; Bal-

ance between predicted available access time
and computing time for the simulation

Table 3.4:

FalconSAT6 Orbital Parameter Ranges Used in Parametric Studies

Orbital Element

\ Value Range

Semi-major Axis
Eccentricity
Inclination

Argument of Perigee
Right Ascension of Ascending Node

Mean Anomaly

6716.4km - 7600km
0.0-0.9
0.0° - 98°
0.0° - 360°
-180° - 360°
-180° - 360°
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Figure 3.17:  ModelCenter Parametric Study Tool

unlikeliness of being launched into such an orbit. As shown in Table 3.4 all other orbital
elements were varied through their entire possible ranges. Additionally, a minimum
semi-major axis of 6716.4km was chosen as this is the semi-major axis of the ISS at the
epoch time. For this thesis, only orbits higher than the ISS were considered to both
extend the mission duration by reducing atmospheric drag and eliminate any possible
dangers or complications caused from firing a laser towards the Earth’s surface. As will
be discussed in Section 5.3 however, future work may also consider orbits lower than the

ISS as a means to initiate or facilitate the de-orbiting of FalconSAT6.

3.6.1 Model Initial Conditions. As the input to each of the six individual
parametric studies was an orbital element, the outputs were mean range and total access
time. The output graphs from the parametric studies shown in Figures 3.18 - 3.29
were used to initially explore the data over the suspected useful ranges of each of the
parameters. During the verification and validation process, careful consideration was
given to each graphical relationship to verify that the simulation was producing the

expected results (results that could be determined at this point without the use of the
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model). As mentioned in Section 3.5.1.3, in addition to enabling the validation of the
TLE and orbital elements to be used in the simulation, initially co-locating FalconSAT6
with the ISS enabled what is suspected to be the best case scenario to be evaluated.
Intuitively, if FalconSAT6 was co-located with the ISS, the expected result would be the
maximum access time possible given the constraints of the mission described in Section
3.5.1.2. As shown in Table 3.5, the total access time over the three month simulation
was 1244293.626sec or 14.4015days. Although, this is clearly not the entire three month
duration of the simulation, it demonstrates the point that, within the limitations of
the STK simulation, co-locating the two spacecraft will produce a sizable total access
time. As described in Section 3.2, the two satellites in the simulation did not stay in
“formation” flight for the entire three month time span mainly because of the different
drag models of the orbital propagators used. This result was the first indication that the
model was running correctly.

Table 3.5:  Global Statistics for STK Access Report with FalconSAT6 Co-located with
the ISS

| Access  Start Time (UTCG) Stop Time (UTCG) | Duration (sec)

Min Duration 10 23 Jan 2010 18:06:19.744 23 Jan 2010 18:25:38.689 || 1158.945
Max Duration 5 9 Jan 2010 08:34:53.151 23 Jan 2010 11:22:52.078 || 1219678.927
Mean Duration 124429.363
Total Duration 1244293.626

The AER report was then used to validate the model. Table 3.6 shows that both
the azimuth and elevation remained within the £20° cone defined in Figure 3.14(a).
Additionally, Table 3.6 shows that the range also remained within the parameters defined
in Figure 3.14(a). This result in the AER report was the second indication that the
simulation was running correctly. Next, the orbit elements themselves were used to

additionally validate the model.

3.6.2  Orbital Elements. Figures 3.18 - 3.29 give insight into the accurate
execution of the model. Figures 3.18 and 3.19 are both outputs as a result of varying
semi-major axis over the range shown in Table 3.4 and holding the other five orbital

elements constant at the ISS’s epoch time. In both figures, the expected result is shown.
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Table 3.6:  Global Statistics for STK AER Report with FalconSAT6 Co-located with

the ISS
| Access Time (UTCG) Azimuth (deg) Elevation (deg) Range (km)

Min Elevation | 9 Jan 2010 05:43:21.776  3.921 -6.659 40.000987
Max Elevation | 23 Jan 2010 15:37:27.247 351.957 11.518 40.000961
Mean Elevation -0.625

Min Range 23 Jan 2010 15:37:27.247 351.957 11.518 40.000961
Max Range 16 Jan 2010 09:54:37.726  359.707 -1.444 306.994651
Mean Range 210.252152

Figure 3.18 shows an extremely high total access time at the ISS’s semi-major axis (as
shown in Table 3.2) at the epoch time followed by a steep decline toward zero access
time as semi-major axis is increased. Meanwhile, Figure 3.19 shows the range steadily
climbing as semi-major axis is increased until the range constraint shown in Figure
3.14(a) is reached and the model no longer records any access. In addition to producing
the expected result of increasing range with an increasing semi-major axis, Figure 3.19

also demonstrates that the range constraints have been correctly applied.
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Figure 3.18:  Total Access Time as a Function of Semi-Major Axis
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Figure 3.19:  Mean Range as a Function of Semi-Major Axis

Figures 3.20 and 3.21 depict total access time and mean range as a function of
eccentricity. Figure 3.20 shows the expected result of a very high total access time at
approximately the ISS’s eccentricity (as shown in Table 3.2) then quickly approaching
zero as the orbit becomes more eccentric. Mean range, however, produces an interesting
result. There is no single region where the mean range either approaches zero or becomes
very large. This result could be due to a coupling effect between semi-major axis and
eccentricity or the geometry of the constrained problem. For this analysis of eccentricity,
semi-major axis has been held constant at 6716.4km. Therefore, as the orbit increases
in eccentricity it is possible that the orbit periodically intersects with the Earth’s surface
creating the discontinuous regions of zero mean range. This phenomenon will be further

explored in Chapter IV.

Inclination is evaluated in Figures 3.22 and 3.23. Both of these figures are an
excellent and clear indication that the model was performing as expected. Figure 3.22
indicates a very high total access time at the inclination of the ISS while approaching

zero at all other inclinations. Conversely, Figure 3.23 shows a minimal mean range
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Figure 3.21:  Mean Range as a Function of Eccentricity
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between the satellites at the ISS’s inclination (as shown in Table 3.2) while showing a
relatively large mean range at all other inclinations. Intuitively, with all other variables
held constant, this is the expected result from varying inclination and reinforces the

validity of the model.
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Figure 3.22:  Total Access Time as a Function of Inclination

Finally, in Figures 3.24 - 3.29, argument of perigee, right ascension of ascending
node, and mean anomaly are all evaluated. Similar to semi-major axis, eccentricity, and
inclination, these figures all present the expected result. At the ISS’s value for each
respective orbital element, (as shown in Table 3.2) Figures 3.24, 3.26, and 3.28 show
a prominent spike in total access time while total access time is relatively low for all
other values. Also, in Figures 3.25, 3.27, and 3.29 mean range is approximately zero at
and near the ISS’s value at epoch time, while indicating a relatively large value at other

values.

On face value it appears that many of the graphs have regions where the output is
undesirable and there are extensive areas of input values that can be eliminated based on

these graphs. However, since there are six input variables involved in this problem and
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Figure 3.23:  Mean Range as a Function of Inclination
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Figure 3.24:  Total Access Time as a Function of Argument of Perigee
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Figure 3.25:  Mean Range as a Function of Argument of Perigee
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Figure 3.26:  Total Access Time as a Function of Right Ascension of Ascending Node
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Figure 3.27:  Mean Range as a Function of Right Ascension of Ascending Node
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Figure 3.28:  Total Access Time as a Function of Mean Anomaly
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Figure 3.29:  Mean Range as a Function of Mean Anomaly

only one orbital element at a time is being varied throughout these parametric studies,
none of the data regions will be curtailed at this point. After carefully analyzing the
results of the constraint evaluations in Tables 3.5 and 3.6, as well as the behavior of
the six orbital elements in Figures 3.18 - 3.29, it can be concluded that the STK and
ModelCenter simulation described in this chapter produce consistent and correct results

for the purpose of evaluation in Chapter IV.

3.7 Summary

This chapter has shown the detailed development, implementation, verification,
and validation of the model to be used in optimization of a satellite’s orbit. The simula-
tion used in this research is made up of a detailed STK model containing a component
representing the ISS and one representing FalconSAT6. This STK model was inserted
into ModelCenter as a single component and the built in tool contained in STK and
ModelCenter were used to verify and validate the construction of the model and the

results it produces.
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IV. Results and Discussion
4.1 Chapter Overview

Following the construction, verification, validation, and initial exploration of the
combined STK and ModelCenter simulation using various parametric studies as discussed
in Chapter III, the model was fully explored using ModelCenter’s built-in suite of data
exploration and optimization tools. In this chapter the use of ModelCenter’s Design of
Experiments tool will be discussed followed by an in depth evaluation of the data using
ModelCenter’s genetic optimization tool called Darwin. The chapter will conclude with
an evaluation of the optimized solution using STK’s built in obscuration tool as well as

a discussion on potential mission designs using a more powerful laser.

4.2 Design of Experiments

After making an initial exploration into the data using various parametric studies,
the data was dissected using the design of experiments tool in ModelCenter. The setup

of the parametric study’s graphical user interface can be seen in Figure A.1.

Using the same six orbital parameters with the same value ranges as described in
Table 3.4 and requesting the same outputs of total access time and mean range, an in
depth view of the key drivers was obtained. Along with representing the six inputs and
two outputs in one succinct plot, ModelCenters design of experiments tool identified the
variables that have the largest impact on the desired solutions as well as the coupling
of variables that significantly affect the solution. The variable influence profiles for both

total access time and mean range are displayed in Figures 4.1 and 4.2 respectively.

As is evident from Figures 4.1 and 4.2, some variables are more influential on the
result than others. Namely, as seen in Figure 4.1, total access time for the simulation
is most influenced by eccentricity, followed by semi-major axis, and then the coupling
between semi-major axis and eccentricity. Additionally, as seen in Figure 4.2, mean range
is influenced mostly by the coupling between semi-major axis and eccentricity followed
by semi-major axis. Mean anomaly also influences the solution, but to a lesser degree.
Figures 4.1 and 4.2 both give interesting insight into the simulation while confirming

that the model was producing realistic results. One would expect that as semi-major
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axis and eccentricity increase, the mean range between the satellites would be greatly
affected. Also, as those same variables are changed, it is also reasonable that total access

time would be greatly effected.

Using the information from the design of experiments, it can be seen that there is a
strong influence on both mean range as total access time from the coupling of semi-major
axis and eccentricity. To verify and visualize this phenomenon, three-dimensional carpet
plots of the space were obtained with mean range and total access time as the outputs.
The setup of the carpet plot tool’s graphical user interface can be seen in Figure A.2.
The carpet plots were created by varying both semi-major axis and eccentricity over
their entire ranges as described in Table 3.4. The variables were each divided into ten
equal steps creating a 100 run plot. The carpet plots for mean range and total access

time are displayed in Figures 4.3 and 4.4.
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Figure 4.3:  3-Dimensional Carpet Plot of Mean Range as a Function of Semi-Major
Axis and Eccentricity

The carpet plots shown in Figures 4.3 and 4.4 clearly display the effect described
in the variable influence profiles shown in Figures 4.1 and 4.2. Mean range is highly

dependent on the coupled value of semi-major axis and eccentricity; however, total access
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Figure 4.4:  3-Dimensional Carpet Plot of Total Access Time as a Function of Semi-
Major Axis and Eccentricity

time is clearly dependent on both semi-major axis and eccentricity, but the coupling of

the two orbital elements to a lesser degree.

Although Figure 4.3 is not immediately intuitive, the figure makes sense and helps
validate the model when one considers that this plot is only representing the range when
there is an access between the ISS and FalconSAT6. If ranges outside of access times
were considered, the plot may look very different as a majority of the time the satellites
would potentially be thousands of kilometers apart due to the phasing of the orbits. In
this case, orbital elements such as mean anomaly, right ascension of ascending node, and

argument of perigee could more greatly influence the range between the satellites.

4.3 Genetic Optimization

Using the data from Sections 3.6 and 4.2 one is now informed enough to begin
fully exploring the design space with ModelCenter’s genetic optimizer tool Darwin. A
brief discussion on genetic optimization can be found in Section 3.4.2.1. No region of

input values of any of the orbital elements was identified through the parametric studies
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or the design of experiments as a candidate to be eliminated from the experiment. The
simulation was very similar to the design of experiments discussed in Section 4.2. That
is, the six orbital elements were utilized over their ranges as described in Table 3.4 and
the desired outputs were still mean range and total access time. Using Darwin however,
ModelCenter was asked to drive the system to a desired solution. Also, the model was
constrained to maximize the total access time, minimize the mean range between the
satellites, and constrain the mean range to the 40km to 883km window described in
Section 3.5.1.2. The setup of the genetic optimizer’s graphical user interface can be seen

in Figure A.3.

The Darwin genetic optimizer in ModelCenter was allowed to explore the design
space defined in Table 3.4 and Figure A.3 for approximately 13 hours, and as shown in
Figure 4.5, approximately 7000 different orbits were considered to rigorously explore the
available trade space. Fach data point in Figure 4.5 represents an individual design point
run by the optimization. A design point, in this case, being an orbit defined with all
six orbital elements that meets the constraints discussed in Section 3.5.1.2. Although in
Figure 4.5 there appears to be a clear trend of the maximum total access times occurring
around 600km, this unsorted, raw data must be further dissected to reveal the true

nature of the solution.

To accurately determine which truly optimal solutions exist, Darwin’s data visu-
alizer was configured. First, the graphical representation of the objectives as discussed
in Section 3.5.1.2 were set. Next, and most importantly, the real world physical mean
range constraints also discussed in Section 3.5.1.2 were set. Additionally, as seen in Fig-
ure 4.5, it appears that there are a multitude of solutions with relatively large total access
times. To further bound the design problem a minimum total access time of 10000sec or
166.66min was set as an additional constraint. This 10000sec constraint was determined
by the work in [16] as a value that would allow approximately four hundred firings of a
BHT on board FalconSAT6. The combination of these two configuration steps clearly
revealed the feasible solutions to the optimization problem and made the examination
of the true solutions more clear. As this particular optimization is the chief focus of this

research, the 10000sec constraint was only applied to this case for the purpose of more
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Figure 4.5:  2-Dimensional Plot of Total Access Time vs. Mean Range - All Solutions

accurately dissecting the data. The additional cases described in Section 4.5 were not
analyzed in as great of depth and were therefore not constrained to a minimum total
access time. The setup of the data visualizer’s graphical user interface can be seen in

Figure A 4.

In addition to the standard 2-Dimensional and 3-Dimensional plots easily obtain-
able from nearly all data manipulation software packages, as discussed in Section 3.4.2,
ModelCenter has the capability to display up to 7-Dimesional information on one graph.
For ease of readability and understanding, this research however, nothing greater than
5-Dimensional graphs will be used. Figures 4.6 - 4.8 are all examples of these multi-
dimensional data representations. The significance of each figure will be discussed in

turn. Additional multi-dimensional figures are shown in Appendix B.

Figure 4.6 provides the initial look at the complex design space of this research.
Here, mean anomaly, eccentricity, and semi-major axis are displayed on the X, Y, and
Z axes respectively. Additionally, the total access time is represented by the size of the

data point, while the mean range is represented by the color. As is apparent in Figure
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4.6(a), a majority of the feasible solutions (shown here in various shades of blue and
green) are in the expected region. That is, a very low eccentricity and a semi-major
axis close to that of the ISS. In terms of semi-major axis and eccentricity, however, the
majority of feasible solutions are centered around approximately 60°. This difference in
mean anomaly from the ISS’s is sensible as this optimized orbit differers from that of the
ISS and therefore a difference in satellite phasing (in the form on the mean anomaly) is

required to gain the greatest total access time between the satellites.

It it obvious from this first look at the data that although figures such as Figure
4.6(a) are useful and will be considered throughout this chapter, a more succinct depiction
of the important data is necessary. Figure 4.6(b) provides the Pareto front required to
draw meaningful conclusions about the model and extract the optimized solution. As
is apparent with both the infeasible and non-Pareto solutions removed, the suspected
optimized solution is identified by one of the three data points on the Pareto front. See

Section 3.4.2.2 for a more detailed discussion on Pareto fronts

Similar to the discussion for Figure 4.6, Figure 4.7 depicts an interesting result. In
Figure 4.7 eccentricity, semi-major axis, and mean range are represented on the X, Y,
and Z axes respectively while total access time is represented by both the color and size
of the data points. The feasible points are displayed in color, while the infeasible one are
shown in gray. Considering Figure 4.7(a), it can be clearly seen that there is an effective
“floor” to the minimum values that the mean range can be while still producing a viable
total access time. Additionally, it is clear by the large cluster of feasible solutions near
the z-axis that a low semi-major and eccentricity (similar to that of the ISS) will produce
the greatest total access time between the satellites. This observation is reinforced by

the Pareto front in Figure 4.7(b) where the Pareto solutions are clustered near the z-axis.

It should also be mentioned at this point that although the mean ranges of the
Pareto solutions in Figure 4.7(b) are approximately 500km (quite far from the minimum
constraint of 40km as described in Section 3.5.1.2), these are acceptable results. Because
the proposed solutions are well within the limit of 883km, it is sensible that to get more
total access time a mean range close to 40km would be insufficient due to too great of a

“Ayby” speed.
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Figure 4.6: 5-Dimensional Plot of Eccentricity, Semi-Major Axis, Mean Anomaly,
Mean Range, and Total Access Time
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The final multi-dimensional plots to be evaluated are show in Figure 4.8. Similar
to Figures 4.6 and 4.7, Figure 4.8(a) shows a clear trend in a localized region toward
a desirable total access time. Figure 4.8 represents eccentricity, semi-major axis, and
total access time on the X, Y, and Z axes respectively. Mean range is represented by
the color of the data points. Again, the feasible points are displayed in color, while the
infeasible one are shown in gray. Consistent with the results from Figure 4.7(a), the
vast majority of feasible data points in Figure 4.8(a) are the same color. This indicates
that, consistent with the rest of the results, feasible solutions all lie around the same
region of mean ranges (approximately 500km to 600km). Additionally, all of the feasible
solutions are clustered around a relatively small semi-major axis and eccentricity (again,
similar to the ISS). The Pareto front shown in Figure 4.8(b) clearly indicates the designs

of interest, with the likely optimal solution at the top of the z-axis.

4.3.1 Darwin Results.  After carefully analyzing the data and variable relation-
ships presented in Figures 4.5 - 4.8, one may now begin to accurately draw conclusions
of what an orbit optimized to wirelessly transfer power from the ISS to FalconSAT6 will
look like. Figure 4.9 provides an ideal means of summarizing the data into a concise form
for interpretation. Figure 4.9 clearly looks similar to Figure 4.5 except now the data has
been annotated based on the insight gained from our multi-dimensional analyses for ease

of interpretation and understanding.

Figure 4.9 is a 2-Dimensional plot with mean range and total access time represent-
ing the X and Y axes respectively. The design points are color coded in response to the
configuration accomplished in Figure A.4(a). That is, the more blue the data point, the
closer it is to meeting the main objective of maximizing total access time. Additionally,
data points forming the Pareto front are hilighted with black crosses and those design
points deemed infeasible from the configuration in Figure A.4(b) are in gray. It can
clearly be seen that the bulk of the highly desirable design points are localized around a

relatively narrow band of mean range values.

Typically when analyzing a Pareto front, as discussed in Section 3.4.2.2, it would

be desirable to select a design point that is the best compromise between two or more
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competing variables. In this research however, the problem has been constrained so that
the maximum total access time at a given range will always be the desirable solution
over those with fewer total access times (as no solution is able to be found outside the
permissible ranges as discussed in Section 3.5.1.2). In this case, as seen in Figure 4.9,
there is only one “peak” in the data around a narrow window of ranges. Therefore,
the top value of this peak should be the optimal solution. The maximum value in this
simulation, “Design 4083” has been highlighted on Figure 4.9 as the optimal solution

and will be discussed.

total vs. range
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] Design4DBSJ
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Figure 4.9:  2-Dimensional Plot of Total Access Time vs. Mean Range with Pareto
front, Infeasible Solutions, and Optimal Solution (Design 4083) Hi-lighted

The details of design 4083 (along with seven other excellent design candidates) can
be seen in ModelCenter’s data explorer interface in Figure 4.10. As is apparent in Figure
4.10, although the other candidate designs are also desirable, they have very similar
orbital elements to that of design 4083. Therefore, both as the chief design and as a

representative to the other candidate designs, only design 4083 will be discussed here.
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An isolated view of design 4083’s orbital elements as well as evidence of its satisfaction

of the design requirements can be seen in Figure 4.11.
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Figure 4.10:  Darwin Data Explorer Window Showing Optimized Results in Tabular
Form

As a verification of the optimization process, design 4083 was taken from Darwin’s
output and inserted as the orbital elements for FalconSAT6 directly into STK. This
step was conducted in a very similar manner to the way the ISS co-location orbit was
established as discussed in Section 3.5.1.2 and seen in Figure 3.15. Once design 4083’s
orbital elements were inserted for those of FalconSAT6’s, the orbits of the two satellites
were interrelated as seen in Figure 4.12. (Note the similarity between design 4083 and

the ISS’s orbit, this similarity will be discussed in Chapter V.)

As an additional verification that design 4083 is meeting all of the design specifi-
cations and expectations, an analysis into the angular rate and range rate between the
two satellites was conducted. Periodically throughout the analysis period as discussed
in Section 3.5.1, the angular rate and range rate were sampled. As discussed in Section
3.5.1.2, it is desirable to keep the angular rate between the ISS and FalconSAT6 under

1.333deg/sec as shown in Equation 3.7. Figure 4.13(b) is an example of the extremely
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Figure 4.11:  Detail View of Optimal Design 4083

low angular rates of 0.064436deg/sec and range rates of —0.069608km /sec produced by
design 4083.

Finally, STK’s Access and AER reporting tools were utilized on the optimized
FalconSAT6 orbit. As is evident in Table 4.1, STK verified ModelCenter’s total access
time from design 4083. The 4.076sec difference in computed total access time between
the Darwin solution (as presented in Figure 4.11) and the STK solution (presented in
Table 4.1) is approximately a .003% error and can be attributed to the round off of
the values of the orbital elements that occurred when the ModelCenter solution was
imported into STK. The complete access report for the analysis period can be seen in
Appendix C. The summary of STK’s AER report as shown in Table 4.2 also reinforces
the fact that design 4083 is a viable solution. The minimum range of 145.177km and
the maximum range of 883.000km are both within the constraints described in Section

3.5.1.2. Additionally, the azimuth and elevation angles never exceed the +20° constraint

66

www.manharaa.com




(b) Close-in View

Figure 4.12:  Association of Optimized FalconSAT6 Orbit (in pink) and ISS Orbit (in
blue)
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Figure 4.13:  Instantaneous Values for: Azimuth, Elevation, Range, Angular Rate, and
Range Rate for Figure 4.12

also described in Section 3.5.1.2. A more detailed AER report can be seen in Appendix
D.

Table 4.1:  Global Statistics for STK Access Report with FalconSAT6 in Optimized
Orbit

| Access  Start Time (UTCG) Stop Time (UTCG) | Duration (sec)

Min Duration 10 4 Feb 2010 14:37:52.562 4 Feb 2010 14:46:14.867 502.305
Max Duration 20 16 Mar 2010 18:50:34.16 16 Mar 2010 21:07:52.963 || 8238.800
Mean Duration 4885.289
Total Duration 117246.924

Table 4.2:  Global Statistics for STK AER Report with FalconSAT6 in Optimized
Orbit

| Access Time (UTCG) Azimuth (deg) FElevation (deg) Range (km)

Min Elevation | 29 Jan 2010 13:41:31.534 355.65 -0.999 883.000128
Max Elevation | 5 Mar 2010 14:41:47.473  12.590 19.999 145.177607
Mean Elevation 3.658

Min Range 5 Mar 2010 14:41:47.473  12.590 19.999 145.177607
Max Range 22 Feb 2010 01:11:53.575 5.037 -0.272 883.000659
Mean Range 566.871968

4.4 Obscuration Analysis

The final step in producing a valid design and therefore a valid design tool was to

insert the best design from Darwin back into STK and run STKSs obscuration tool as
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seen in Figure A.5 to ensure that there were not any serious losses in access time due to
obscuration from the ISS. STK’s obscuration tool uses a simplified graphical model of
the ISS, as seen in Figure 4.14, to calculate when the laser is being obscured by the ISS
during an access time. Obscuration levels should be extremely low due to the chosen
mount point on the ISS as well as the constrained £20° cone the laser is allowed to
traverse. Based on the results yielding very large total access times from Darwin and
the minimum total contact time that is required to fire the BHT onboard FalconSAT6
as determined by the work in [16], a moderate amount of obscuration (if it were a factor)

is certainly tolerable for a successful mission..

‘A LaserPowerBeaming - STK 9 - Obscuration View 1 - LaserMountPoint -5 ‘
i Fle Edk View Insert fnalysis  Sensor  Utiities  Window  Help

PR sz ae - Ria. g 0 R:elie: - ]
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| =£4 LaseiPowerBesning
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=-@f 155_28544
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| €3 LaserMountPaint |¢19.848,-173.848) |9 Jan 2010 03:31:50.000 | Time Step: 20.00 sec

Figure 4.14:  STK’s Access Obscuration Window

A time step of 60sec was chosen for the obscuration analysis. Although a 60sec time
step may seem quite large, the minimum duration for any single contact as seen in Table

4.1 is 502.305sec. This time step yielded eight samples during the shortest access. The
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mean access time of 4885.289sec yields an average of 81 samples per access. Additionally,
as STK executes the obscuration analysis graphically it takes much longer (in terms of
computing time) for a single analysis than a standard assess report and therefore step size
becomes a serious consideration. Finally, even at a 60sec time step, over the three month
analysis period, the obscuration tool produced approximately 129,600 samples. Table
4.3 shows only three minutes over the entire three month period (and specifically the
117,2465sec access time) that the laser was obscured by the ISS. This result translates into
.0015% obscuration of the laser by the ISS and is therefore not a factor for completing this
mission. Figure 4.15 displays the same information described in Table 4.3 in graphical
form. It is apparent from Figure 4.15 that there are only two distinct spikes in the
obscuration, both at the times listed in Table 4.3. The setup of the obscuration tool’s

graphical user interface can be seen in Figure A.5.

Table 4.3:  Suspected Obscured Times During Analysis Period

Time (UTCG) Percent Percent Relative Relative
Obscured Unobscured Obscured Area Unobscured Area

10 Feb 2010 12:10:30.000 100 0 1 0

10 Feb 2010 12:11:30.000 100 0 1 0

05 Mar 2010 14:41:30.000 100 0 1 0

As STK does not indicate the source of the obscuration (other than the user defined
target of the analysis, in this case the ISS), an investigation into the obscuration report
is necessary. To attempt to verify the results of the obscuration report and to gain some
understanding of what part of the ISS was obscuring the laser, a view of STK’s 3D
Graphics Window at the three suspected obscuration times plus/minus approximately
one minute was analyzed. At each suspected obscuration time, a view down the bore
sight from the laser transmitter toward FalconSAT6 was analyzed. The result from
the suspected 10 Feb 2010 12:10:30.000 obscuration time can be seen in Figure 4.16.
As is apparent in Figure 4.16, there is nothing obscuring the laser at the suspected
time (or within a minute of the suspected time as discussed above). The other two
suspected obscuration times yield the exact same result. This could be due to one of two

things. First, there is potentially an extremely short obscuration occurring somewhere
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Figure 4.15:  Graphical Obscuration Report

in the minute surrounding the suspected obscuration time. This would be indicated in
the obscuration report that the laser is being blocked for the entire minute. Also, as
the suspected obscuration time was visually analyzed at a 0.50sec time step as seen in
Figure 4.16 with no obscuration detected on the 3D display window, it is possible that the
.0015% error (as discussed earlier in this section) is computer error of some form and no
obscurations exist for the analysis period. As this is only a feasibility study, this research
will only recommend that when the actual mission is planned, careful consideration is
given to even the smallest possible obscuration from the ISS. However, here, it is sufficient
to say that even given the full 180sec of obscuration over the entire 117,246sec access

time, obscuration is not a reason why the proposed mission is not feasible.

4.5 FExpanded Constraints

Through this research it had been shown that a wireless power beaming mission
between the ISS and a target satellite is feasible, however there are limitations in what
is possible. The orbital elements from the optimal design (Design 4083) are very similar

to that of the ISS as seen in Table 4.4. However, as discussed in Section 3.6.1, this
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Figure 4.16:  Bore Sight View of Laser at the 10 Feb 2010 12:10:30.000 Suspected
Obscuration Time

result is expected because the truly optimal mission configuration would be to co-locate
FalconSAT6 with the ISS as discussed in Section 3.6.1. With the key physical constraints
of a minimum 30sec contact time and a maximum range of 883km as discussed in Section
3.5.1.2 the orbital options are limited to those that are relatively very near that of the
ISS. Again, this has been shown to be feasible. However, if greater range or more contact

time is desired, the constraints will need to be expanded.

Table 4.4:  Differences in FalconSAT6’s Optimized Orbital Elements from ISS’s Orbital
Elements

ISS Orbital  Optimized FalconSAT6 Difference

Elements Orbital Elements
Semi-major Axis: 6716.398km  6763.8km 47.402km
Eccentricity: 0.0007655 0.0013 0.0005345
Inclination: 51.6475° 50.81° 0.8375°
Argument of Perigee: 160.0825° 134.7° 25.3825°
Right Ascension of Ascending Node: | 330.1976° 328.1° 2.0976°
Mean Anomaly at Epoch: 206.4481° 41.9° 164.5481°
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4.5.1 1MW Laser and 15sec Minimum Access Time.  To determine which or-
bits might be possible with more flexible system constraints, the Darwin optimization as
described in Section 4.3 was re-run with a minimum contact time of 15sec and a max-
imum range of 32,030km (versus the 30sec and 883km constraints described in Section
3.5.1.2). The new 15sec minimum contact time is derived from the assumption that a
fast-steering with a faster slew rate than 1.33deg/sec could be obtained. Additionally,
the new maximum range of 32030km is derived by [16] from the use of a 1MW laser
verses the 3kW laser used in the determination of the original 883km maximum range.
The access and AER reports from this second optimization simulation and the optimized
orbital elements can be see in Tables 4.5 - 4.7. A detailed discussion on the execution of
Darwin can be found in Section 4.3.

Table 4.5:  Optimal Orbit with Minimum Access Time of 15sec and Maximum Range
of 32030km Using a 1MW Laser

Semi-major Axis: 7458km
Eccentricity: 0.5262
Inclination: 61.36°
Argument of Perigee: 230.2°
Right Ascension of Ascending Node: -20.3°
Mean Anomaly at Epoch: 269.6°

Table 4.6: Global Statistics for STK Access Report with FalconSat6 in Enhanced
Orbit Using a 1MW Laser

| Access  Start Time (UTCG) Stop Time (UTCG) | Duration (sec)

Min Duration 18 27 Feb 2010 21:49:26.317 27 Feb 2010 21:49:43.424 || 17.107
Max Duration 6 23 Jan 2010 01:33:40.725 23 Jan 2010 15:40:09.691 || 50788.967
Mean Duration 30335.850
Total Duration 788732.104

Note, in Table 4.7 the maximum range is less than the 32030km constraint set in
the simulation. This would indicate that the 4413.80km maximum range noted in Table
4.7 is the maximum range obtainable with the given geometry of this mission. Additional
work using the model in [16] is necessary to determine the amount of input power to the

laser associated with this apparent “absolute” maximum range.
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Table 4.7:  Global Statistics for STK AER Report with FalconSat6 in Enhanced Orbit
Using a 1MW Laser

| Access Time (UTCG) Azimuth (deg) Elevation (deg) Range (km)

Min Elevation 29 Jan 2010 01:29:03.994 358.437 -18.542 4408.670578
Max Elevation | 27 Feb 2010 21:49:43.424  340.679 20.000 134.065590
Mean Elevation -7.974

Min Range 27 Feb 2010 21:49:43.424  340.679 20.000 134.065590
Max Range 27 Mar 2010 10:00:06.559 358.498 -18.409 4413.804282
Mean Range 2331.238209

As is evident from Tables 4.6 - 4.7, as the problem becomes less constrained due to
an increase in the capabilities of the hardware being used, more interesting and flexible
orbits are possible. Evaluating Table 4.8 demonstrates that the difference in orbital
elements allowed by increasing the capabilities of the laser and decreasing the minimum
access time. When compared to the difference in orbital elements shown in Table 4.4
one can easily see the gain in available orbits by modifying the constraints. As this is
a feasibility study, Table 4.8 excludes argument of perigee, right ascension of ascending
node, and mean anomaly as these orbital elements are concerned with phasing and launch
times and therefore not as readily comparable.

Table 4.8:  Differences in FalconSAT6’s Optimized Orbital Elements from ISS’s Orbital
Elements

ISS Orbital FalconSAT6 Orbital

Elements Elements (1MW Laser) Difference
Semi-major Axis: | 6716.398km 7458 km T742km
Eccentricity: 0.0007655 0.5262 0.5254
Inclination: 51.6475° 61.36 ° 9.71°

4.5.2  6kW Laser and 30sec Minimum Access Time.  After demonstrating the
benefit to the mission from using a 1MW laser (which, with current technology is fairly
unlikely to be found affixed to the ISS) an evaluation using a more reasonable laser
should be conducted. In this case, a 6kW laser will be used as the transmitter. Based on
[16], a 6kW laser will yield a maximum effective range of 1170km (as compared to the
883km from the 3kW laser in the primary mission design described in Section 3.5.1.2).

The Darwin optimization as described in Section 4.3 was re-run with a minimum contact
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time of 30sec and a maximum range of 1170km. The optimized orbital elements and
the summaries of the access and AER reports from this third optimization simulation
can be see in Tables 4.9 - 4.11. A detailed discussion on the execution of Darwin can be

found in Section 4.3.

Table 4.9:  Optimal Orbit with Minimum Access Time of 30sec and Maximum Range
of 1170km Using a 6kW Laser

Semi-major Axis: 6770.0km
Eccentricity: 0.0086
Inclination: 50.26°
Argument of Perigee: 155.6°
Right Ascension of Ascending Node: -30.2°
Mean Anomaly at Epoch: 218.5°

Table 4.10:  Global Statistics for STK Access Report with FalconSat6 in Enhanced
Orbit Using a 6kW Laser

| Access  Start Time (UTCG) Stop Time (UTCG) | Duration (sec)

Min Duration 26 7 Mar 2010 14:25:34.753 7 Mar 2010 14:26:25.411 || 50.658
Max Duration 3 14 Jan 2010 01:47:27.101 14 Jan 2010 04:43:07.931 || 10540.830
Mean Duration 4242.134
Total Duration 156958.975

Table 4.11:  Global Statistics for STK AER Report with FalconSat6 in Enhanced Orbit
Using a 6kW Laser

| Access Time (UTCG) Azimuth (deg) Elevation (deg) Range (km)

Min Elevation | 4 Feb 2010 11:06:41.296  351.580 -4.942 1130.324898
Max Elevation | 24 Jan 2010 23:11:59.887  351.900 20.000 268.230839
Mean Elevation 1.957

Min Range 19 Jan 2010 14:46:09.530  8.496 -0.503 70.734924
Max Range 12 Mar 2010 13:04:01.156  358.057 0.200 1170.000663
Mean Range 739.268272

Similar to Table 4.8, Table 4.12 excludes argument of perigee, right ascension of
ascending node, and mean anomaly as these orbital elements are concerned with phasing
and launch times and therefore not as readily comparable. As expected, an increase in

the maximum effective range of the laser allowed for a larger semi-major axis. As is
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Table 4.12:  Differences in FalconSAT6’s Optimized Orbital Elements from ISS’s Or-
bital Elements

ISS Orbital FalconSAT6 Orbital

Elements Elements (6kW Laser) Difference
Semi-major Axis: | 6716.398km  6770.0km 53.6km
Eccentricity: 0.0007655 0.0086 0.0078
Inclination: 51.6475° 50.26° 1.39°

evident from the comparison of Tables 4.8 and 4.12, it would potentially take quite a bit
more power than is currently available to have a dramatic impact on other key orbital

elements, such as inclination.

As seen in Figure 4.17, there are definitely more feasible orbits over a wider range
of orbits for a 6k laser as shown in Figure 4.17(b) than for the 3kW laser as shown in
Figure 4.17(a). As discussed above, this definitely indicates that more power is required

to extend the envelope of feasible orbits.

4.6  Summary

This chapter has shown the use of ModelCenter’s Design of Experiments tool and
Darwin, as well as STK’s Obscuration tool. After evaluating the model with the design
of experiments, Darwin, ModelCenter’s genetic optimization tool was utilized to find the
orbit for FalconSAT6 that would yield the maximum total access time while minimizing
the mean range between the satellites. After evaluating the various multi-dimensional
outputs from the simulation run in Darwin, the suspected optimal orbit was validated
via STK’s built-in Access and AER tools. These tools confirmed that the solution was
not only feasible, but also met all constraints placed on the problem. A final evaluation
of the suspected optimal solution using STK’s Obscuration tool revealed no ill effects on
the total access time as a result from an obscuration of the laser by the ISS. The chapter
concluded with an analysis of what would be possible given more liberal constraints on

the orbit.
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V. Conclusions

5.1 Owverview of Research Effort

This research conducted a feasibility study on NASA’s proposed mission to wire-
lessly beam power via laser from the ISS to a target satellite (in this case a derivative
of the USAFA’s FalconSAT5 satellite). This study centered around the development
and validation of an orbital design tool. First, a detailed orbital model of the problem
was constructed in STK and then validated through the use of parametric studies and a
design of experiment. Using the results from these evaluations, Darwin, ModelCenter’s
genetic optimizer, was utilized to find the orbit for FalconSAT6 that would yield the max-
imum total access time while minimizing the mean range between the satellites. After
evaluating the various multi-dimensional outputs from the simulation run in Darwin, the
suspected optimal orbit was validated via STK’s built-in Access and AER tools. These
tools confirmed that the solution was not only feasible, but also met all constraints placed
on the problem resulting in approximately 4885sec of firing time for the BHT over the
three month evaluation period [16]. A final evaluation of the suspected optimal solution
using STK’s Obscuration tool revealed no ill effects on the total access time as a result
of an obscuration of the laser by the ISS. Finally, an investigation was conducted into
which orbits would be possible given a more powerful laser and more rapid slew rate on

the fast-steering mirror.

5.2 Conclusions

As is evident from this thesis, it is feasible to execute a wireless laser power beaming
mission involving the ISS and a target satellite for the purpose of powering a payload.
There are however, several limitations which result in a relatively inflexible mission
profile. Ideally, one would want the ability to launch into as orbits as possible, however
all of the highly feasible orbits very close to the ISS. The optimized orbit easily satisfies
the requirement for this proposed mission; however, it would not expand well into other
missions where some degree of flexibility is required. The geometry of the mission and
the limitations on the strength of the laser are the major contributors to the lack of

flexibility. As the laser must be physically attached to the ISS, there will always be a
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limited field of view for the laser. The field of view must also be constrained so as to add
a factor of safety to prevent striking any of the ISS’s solar arrays with the laser. The
slew rate on the fast-steering mirror also limits the relative rate at which the objects
may pass each other. Additionally, the limitation on available power from the ISS to the
laser translates into a relatively limited range that the target satellite must be within
in order to transfer the appropriate amount of power to the payload. As demonstrated,
any means to reduce the constraints on the problem will most certainly translate into
either an increase in total access time (either through an increase in the slew rate of the
fast-steering mirror and/or greater mean range through an increase in the output power
of the laser). Overall, this work rigorously demonstrated that a feasible wireless laser
power transfer mission between the ISS and a target satellite is possible given today’s

technology.

5.3 Recommendations for Future Work

Future work should focus on extending this feasibility study into a workable mis-
sion. This research should take the form of the following topics: First, an analysis into
real time mission planning should be conducted. That is, plan a mission far enough in
the future with enough lead time to actually execute it using the pre-planned data. This
mission plan should incorporate any planned maneuvers of the ISS as well as all ISS
ephemeris in STK. Incorporating these additional factors would enable planners to get
a true sense of which orbit would truly be optimal. Another component of a real time
mission plan would be to determine optimal launch windows and launch sites as these
details are obviously critical when choosing various orbital elements. Also, an analysis of
the mission profile including a target satellite in an orbit lower (closer to the Earth’s sur-
face) than the transmitter should be evaluated. As mentioned in Section 3.6, placing the
target closer to the Earth’s surface than the transmitter could invoke new challenges not
present in a mission when the laser is fired away from the Earth. Careful consideration
will need to be given to the potential consequences of striking the Earth’s atmosphere or

surface with the laser. Additionally, the 40km minimum range constraint would poten-
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tially still be present and need to be considered in the geometry and atmospheric drag

aspects of the mission.

Other significant research that can be derived from this thesis includes research into
what possible orbital configurations are possible when the laser is not constrained to being
attached to the ISS. This laser could possibly be its own mission on a different satellite
with the ability to point in any direction through the maneuvering of the laser satellite.
Also, the orbit of the laser satellite could be optimized along with that of the target
satellite to satisfy a new set of constraints. Additional research could also be conducted
to use similar genetic optimization techniques in a more computational manner on the

Hill’s Equations as shown in Section 3.3 to determine an optimal interceptor orbit.
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Appendiz A. Selected Screenshots of the STK and ModelCenter

Graphical User Interface
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Appendiz B. Additional Multi-Dimensional Darwin Plots from
ModelCenter
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Appendiz C. STK Access Report for Optimized Orbit

Shown here is the entire access report for using design 4083 as the orbital elements for

FalconSat6’s orbit. There is approximately an 81min contact about once per week.
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Appendiz D. Abridged STK AER Report for Optimized Orbit

Shown here is the abridged AER report for using design 4083 as the orbital elements
for FalconSAT6’s orbit. Each access as enumerated in Appendix C has a corresponding
entry in the AER report. The azimuth, elevation, and range detail for accesses 1 and 24

are shown here with the summary data.
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